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ABSTRACT

Some scientific inference tasks (including wiass spectrum identification
(Dendral}], medical diagnosis [Mycin], and math theory development
[AM]) have been successfully modelled as rule-directed search
processes. These rule systems are designed quile differently from
“pure production systems”. By concentrating upon the design of one
program (AM), we shall show how 13 kinds of design deviations arise
from (i) the level of sophistication of the task that the sysiem is
designed to perform, (i) the inherent nature of the task, and ‘i) the
designer's view of the task. The fimitations of AM suggest even more
radical departures from traditional ru'e system architecture. All these
modifications are then collected into a new, complicated set of
consiraints on the form of the data structures, the rules, the
interpreter, and the distribution of knowledge between rules and data
structures. These new policies sacrifice uniformity in the interests of
clarity, efficiency and power derivable from a thorough
characterization of the lask. Rule system: whose architectures
conform to the new design principles will be more awkward for many
tasks than would "pure” systems. Nevertheless, the new architecture
should be significantly more powerful and natural for building rule
systems that do scientific discovery tasks.
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I. The Basic Argument

Although rule-based computation was criginally used for formal and systems purposes
[PoatMarkov floyd], researchers in Artificial Inteligence (Al) found that the same
methodology was also useful for modelling a wide vaniety of sophisticated tasks. Many
of these early Al rule-based programs -- called “production systems”™ -- served as
information processing models of humans performing cognitive tasks in several domains
(gt recall [19), algebra word problem solving [1), poker playing [23), ete. [16,18)).

There were many design constraints present in the classical formal rule based systems.
Many of these details were preserved in the Al production rule based programs (e.g.,
forcing all state information nto a single string of tokens). ut there were many
changes. The whole notion of "what a rule system really is™ changed from an effective
probicm statement to a tenderncy to solve problems in a particular way. One tvpical
cotollary of this change of view was that inslead of no external inputs whatsoever,
there was now a presumption of some “environment™ which supplied new entries into
the token sequence. In the next section {see Figure 1) 15 an articulation of these neo-
classical (e, Al crca 1973; see [7) princples for designing “pure” production
cystems,

Due to the early successes, psychological apphcabiity, and aesthetlic simplicity
afforded by production systems, Al researchers bepan to write rule systems (RSs) to
perform informal inductive inference tasks (mass spectrum identification [4), medical
diagnosis (23] and consultation dralopue (6], speech understanding [14]), non-resolution
throrem proving [0), math research [13], and many more)

Yel 1t <eems that most ot the large, successful RSs have violated many of the “pure
production system”™ guidelines. The purpose of tlus paper 15 to show that such
“"oxceptions” were inevitable, becauce any system satisfying the neo-classical design
constraints, though universal in principle, is too impoverished to represent complex
tacks for what they are.

The essence of the neo-classical architecture i« to opt for simplicity in all things, since
there is very little one can say about RSs in general. As more becomes known about
the task of the RS, it turns out that some of that new knowledpe takes the form of
specific constraints on the design of the RS itself (as distinct from what specific
knowledge we choose to represent within that design). Sometimes a new constraint
directly conlradicts the early, domain-independent one; sometimes it is merely a
c~oftening or augmentation of the old constraint.

After examining the “pure” architecture, we shall examine in detail the design of one
particular rule sysiem which discovers and studies mathematical concepts. Deviations
from the pure architecture will be both frequent and extreme.

Subsequent sections will analyze these differences. It will be shown that each one is
plausible -- usually for reasons which depend strongly on the “scientific discovery”

[ZRF Y EN



p. 2 Lenat & Harris

domain ‘of the RS. Some of the limitations of thic RS will be treated, and their
elimination will be seen to require abandoning shlill more of the original design
constraints,

When these modificalions are collected, in the final section, we shall have quite a
different set of principles for building RSs. Not only will naivete have been lost: so
will generality (the breadth of kinds of knowledge representable, the totality of
tractable tasks). Rule systems conforming to the new design will be awkward for many
tasks (just as a sledge hammer is awkward for cracking eggs). However, they should
be significantly more powerful and natural for scientific inference tasks.

2. Early Design Constraints

By a rule system (RS) we shall mean any collection of condition-action rules, together
with associated data structures (DS; also called memories) which the rules may inspect
and alter. There must also be a policy for interpretation: detecting and firing relevant
rules.

These definitions are deliberately left vague. Many details must be specified for any
T actual rule system (e.g., What may appear in the condition part of a rule?). This
* specification process is what we mean by designing a RS.

Figure 1 contains an articulation of the design of the early genersi-purpose Al
production rule systems. Nolice the common theme: the adequacy of simplicity in all
dimensions,

FIGURE 1: Neo-classical Rule System Architecture

1. Frinciple of Simple Memories. One or two uniform data structures define
sufficient memories for a rule system to read from and write into. The
Jormat for entries in these structures «s both uncomplicated and unchanging.

2. Principle of Simple DS Accesses. The prinutive read and write operations are
as simple and low-level as possible; typically they are simply a membership-
test type of read, and an insert-new-element type of write. More
complicated, algorithmic operations on the memories are not available to the
rules.

3. Principle of Isolated DS Elements. Elements of the uniform DS cannot point
to (parts of) other elements. This follows from the preceding principle: if we
aren’t allowed to chase pointers, there may as well not be any.

4, Princinle of Continuous Attention. [n addition to the one or two simple data
structures, there may be an external environment which continuously inserts
stimuli into the DS. The interleaving of stimuli and internally generated
symbols is managed quite trivially: (a) The stimuli are simply inserted into
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the DS as nrw elements; b) Each rule s s» small and quick that no
“tnterruption” mechamism s necessary. The nterpreter may ignore any
suddenly-added stimulus untd the current rule finishes executing. The RS
may be viewed as “continuously” attending to the environment.

Frinciple of Opaque Rules. Rules need not have a format inspectable by
other rules, but rather can be coded in whatever way s convenent for the
programmer and the rule interpreter; te., the set of rules s not treated as
one of the RSs data structures. E.g.. the condition parts of rules may be
barred from fully analyzing the set of productione [22], and the action parts
of rules may not be allowed to delete existing rules [24).

Principle of Simple Rules. Rules consist of a left- and a right-hand side
which are quite elementary: The left hand side (lhs, situation
characterization, IF -part, condition) s typically a pattern-match composed
with a primutive DS read access, and the right hand siude (rhs, consequence,
THEN-part, action! s also scmply a primutive DS write access. There s no
need for sophisticated bundles of DS accrsses on either side of a rule. Thus
several extra rules should be preferred 10 a ungle rule with several actions.

Frinciple of Encoding by Coupled Rules. A collection of interrelated rules is
used to accomplish each subtask; e., wherever a subroutine would be used (n
a procedural programnung language. For erample, programmung an
iteration may require many rules “coupled” by writing and reading special
(re., otherwise meanngless’ loop control notes in the data structure.

Frinciple of Knowledge as Rules. All knowledge of substance should be, can

- be, and s represented as rules. This includes all non-trwvial domain-

10.

dependent (nformation. The role of the DS s just to hold sumple descriptive
informatiwon, intermediate control state messages, recent stimuli from the
environment, etc.

Principle of Simple Interpretation. The topmost control flow wn the RS s via
a sumple rule interpreter. After a rule fires, ¢t s essential that any rule «n
the system may potentually be the next one to fire (re., it s forbidden to
locate a set of relevant rules and fire them off «n sequence). When the rhs of
a rule s executed, «¢ can (and frequently will) drastically alter the situation
that determined which rules were relevant.

Principle of Closure. The representations allowed by (1-9) are sufficient and
appropriate for organizing all the kinds of knowledge needed for tasks for
which a given RS 13 designed.

This design was plausible a proori, and worked quite well for its initial applications (the
simulation of simple human cognitive processes [16,19,24]). But is this design proper
for any RS, regardless of its intended task? In particular, what about scientitic
inference tasks? Over the years, several rule-based inference systems for scientific
tasks have been construcied. With each new success have come some deviations from
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the above principles [7] Were these mere aberrations, or i1s there some valid reason
for such changes in design?

We claim the latter. The tack domain -- scienlific discovery -- dictates a new and
quite different architecture for RSs. To study this phenomenon, we shall describe, in
the next section, one particular RS which defines new mathematical concepts, studies
them, and conjectures relationships between them. Subsequent sections will explore
the deviations of its design from the neo-classical constraints in Figure 1.

3. "AM" A Rule System For Math Theory Formation

A recent thesis [13]) describes a program, called "AM", which gradually expands a base
of mathemalical knowiedpe. The representation of math facts is somewhatl related to
Actors [10] and Beings [12] in the partitioning of such domain knowledge into
rifective, structured modules. Deparling from the traditional control structures usually
ascociated with Actors, Beings, and Frames [15], AM concenirates on one "interesting”
mini-research question after another. These "jobs” are proposed by -- and rated by --
a coflection of approximately 250 situation-action rules. Discovery in mathemalics is
modclled in AM as a rule-guided exploration proces.. This view is explained below in
~Sechion 3.1 (See also [21]) The representation of knowledge is skelched next, followed
by a much more detailed description of the rule-based control structure of AM.
Finally, in Section 3.5, the experimental results of the project are summarized.

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search

The task which AM performs is the discovery of new mathematics concepls and
relation<tips between them. The simple paradigm it follows for this task is to maintain
a praph of parfially-developed concepts , and to obey a large collection of "heuristics”
(rules which trequently lead to discoveries) which guide it to define and study the
most plausible thing next.

for example, at one point AM had some notions of sets, set-operatlions, numbers, and
simple arnithmelic. One heuristic rule it knew said “If f is an interesting relation, Then
look at its inverse”. This rule fired afler AM had studied "mulliplication” for a while,
The rhs of the rule then directed AM to define and study the relation “divisors-of”
(e.g., divisors-of(12) = {1,2,3,4,6,12}). Another heuristic rule which fater fired said “If
f s a relation from A into B, then it’s worth examning those members of A which map
into crtremal members of B”. In this case, f was matched to “divisors-of”, A was
“"numbers”, B was “sets of numbers®, and an extremal member of B might be, eg., a
very small set of numbers. Thus this heuristic rule caused AM to define the set of
numbers with no divisors, the set of numbers with only 1 divisor, with only 2 divisors,
ctc. One of these sets (the last one mentioned) lurned oul subsequently to be quite
important; these numbers are of course the primes. The above heuristic also direcled
AM to study numbers with very many divisors; such highly-composite numbers were
aiso found fo be interesting.
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1his ame paradigm enabled AM to discover concepts which were much more primilive
(e.g., cardinality) and much more sophisticaled (e.g., the fundamental theorem of
arithmetic) than prime numbers. We shall now describe the AM program in more detail.

3.2. Representation of Mathematical Knowledge

What exactly does it mean for AM to “have the notion of” a concept? It means that AM
poscesses a frame-hke data structure for that concepl. For instance, here is how one
concept looked after AM had defined and explored if:

FIGURE 2: A T, pical Concept

NAME: Prime Numbers
DEF INITIONS:
ORIGIN: Number -af -di10rs-ob(x) « 2
PREDICATE -CALCURLUS: Prime(x) ¥ (VzYz]x -+ 2] XOR z=x)
ITERATIVE: (for x>1): For 1 from 2 to x-1, ~{i1|x)
EXAMPLES: 2,71,5, 7,11, 13,17 .
BOUMNDARY: 2, 3
BOUNDARY FAILURES: 0, .
FAJLURES: 12
GENERALIZATIONS: Numbers, Mumbers with an e ‘rn number of divisors,
flumbers with a prime number of divisors
SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely -addables
CONJECS: Urique factorization, Goldbach™s conjecture, Extrema of Divisore-of
ANALOGIES:
Maximally -divigible numbers are conver«e exlremes of Divisors-of
INTEREST: Conjectures tyir.g Primes to Times, to Divisors-of, to closely related ops
WORTH: 800

3.3. Top-level Control: An Agenda of Promising Questions

AM was initially given a cdllection of 115 core concepts, with only a few facels (ie.,
«lols) filled in for each, AM repeatedly chooses somn facet of some concept, and tries
to fill in some entries for that parlicular slol. To decide which such job to work on
next, AM maintaine an agenda of jobs, a global queue ordered by priorily [2) A
typical job is “Full-in examples of Primes”. The agenda may contain hundreds of
entries such as this one. AM repeatedly selects the top job from the agenda and tries
to carry it oul. This is the whole control structure! Of course, we must still explain
how AM creates plausible new jobs to place on the agenda, how AM decides which job
will be the best one to exatute next, and how it carries out a job.

If the job were “Fill «n new Algorithms for Se!-union”, then satisfying it would mean
actually synthesizing some new procedures, some new LISP code capable of forming
the union of any two sels. A heuristic rule is relevant 10 8 job if and only if execuling
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that rule brings AM closer to satisfying that job. Potential relevance is determined a
priort by where the rule is stored. A rule tacked onlo the Domain/range facet of the
Compose concept would be presumed polentially relevant to the job “Fill in the
Domaun of Insert-0-Delete”. The ths of each potenlially rclevant rule is evaluated to
driermine whether the rule is truly relevant,

Once a job is chosen from the agenda, AM gathers together all the potentially relevant
heuristic rules -- the ones which migh! accomplish that job. They are executed, and
then AM picks a new job. While a rule is executling, three kinds of actions or effects
can occur:

i) Facets of some concepts can get filled in (e.g., examples of primes may actually be
found and tacked onto the “Evamples” facet of the "Primes” concept). A typical
heuristic rule which might nave this elfect is:

If examples of X are desired, where X 13 o kind of Y (for some more general
concept V),
Then check the examples of Y; some of them may be examples of X as well.

For the job of filling in examples of Primes, this rule would have AM notice that
Primes is a kind of Number, and therefore look over all the known examples of
Number. Some of those would be primes, and would be lransferred 1o the
Examples facel of Primes.

(tr) New concepts may be created (eg, the concept "primes which are uniquely
representable as the sum of two other primes”™ may be somehow be deemed
worth studying). A typical heuristic rule which might result in this new concept
1S:

If some (but not most) examples of X are also examples of Y (for some
concept Y),

Then create a new concept defined as the intersection of those 2 concepts (X
and Y).

Suppose AM has already isolated the corncept of being representable as the sum
of two primes in only one way (AM actually calls such numbers "Uniquely-prime-
addable numbers®). When AM nolices that some primes are in this set, the above

" rule will create a brand new concepl, defined as the set of numbers which are
both prime and uniquely prime addable.

(i) Now jobs may be added to the agenda (e.g., the current activily may suggest that
the following job is worth considering: “Generalize the concept of prime
numbers”), A typical heurislic rule which might have this effect is:

1f very few examples of X are found,
Then add the following job to the agenda: “Generalize the concept X",

The concept of an agenda is certainly not new: schedulers have been around for a long
time. But one imporlant feature of AM's agenda scheme (s a new idea: attaching -- and
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using -- a Lst of quasi-symbolic reasons to each job which explain why the job is
worth considering, why it's plausible. It is the responsibility of the heuristic rules to
include reasons for any jobs they propose. For example, let’s reconsider the heuristic
rule mentioned in (ww) above. It really looks more like the following:

If very few examples of X are found,

Then add the following job to the agenda: "Generalize the concept X~, for the
following reason: “X’s are quite rare; a slightly less restrictive
concept might be more nteresting”.

If the same job is proposed by several rules, then ceveral different reasons for it may
be present. In addition, one ephemeral reason also exists: “Focus of attention” [9].
Any jobs which are related to the one last executed get "Focus of atlention” as a
bonus reason. AM uses all these reasons to decide how 10 rank the: jobs on the
avenda. Each reason is given a rating (by the heuristic which proposed it), and the
ratings are combined into an overall priorily raling lor each job on the agenda. The
jobe are ordered by these ralings, so it 1s trivial to select the job with the highes!
rating. Nole that if a job already on the agenda is re-proposed for a new reason, then
tt« priority will increase. If the job is re-proposed for an already-present reason,
however, the overall rating of the job will not increase. This turned out to be an
important enough phenomenon that it was presented in [13] as a necessary design
constraint,

AM uses each job’s list of reasons in other ways, Once a job has been selected, the
quality of the reasons is used t¢ decide how much time and space the job will be
pernmitted to absorb, before AM quits and moves on to a new job. Another use is to
rxplain to the human observer precisely why the chosen top job is a plausible thing
for AM to concentrate upon, - .

3.4. Low-level Control: A Lattice of Heuristic Rules

The hundreds of concepts AM pessesses are interrelaled in many ways. One main
organization is that provided by their Generalization and Specialization facets. The
concepts may be viewed as nodes on a large laltice whose edges are labelled
Genl/Spec. The importance of this organization stems from various heritability
properties. For example, Spec is transilive, so the specializations of Numbers include
not only Primes bul all «ts specializations as well.
&®

let us describe a second, very important heritability property. Each of the 250
heuristic rules is altached to the most general (or abstract) concept for which it is
deemed appropriate. The relevance of heuristic rules is assumed to be inherited by all
its speciahzations. For example, a heuristic method which is capable of inverting any
function will be attached to the concept “Function™; but it is certainly slso capable of
inverting any permutation. If there are no known methods specific to the latter job,
then AM will follow the Genl links upward from Permutation to Bijection to Function...,
seeking methods for inversion. Of course the more general concepts’ methods tend to
be weaker than those of the specific concepts, . '
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In other words, the Genl/Spec graph of concepis induces a graph structure upon the
set of heuristic rules. This permits potentially relevant rules 1o be located efficiently.
Here is one more example of how this heritability works in practice: Immediately after
the job “Fill in examples of Set-equalily” is chosen, AM asks each generalization of
Srt-equality for help. Thus it asks for ways to fill in examples of any Predicate, any
Activity, any Concept, and finally for ways 1o fill in examples of Anything. One such
heuristic rule known to the Activity concept says: “If examples of the domain of the
actwity f are already known, Then actually exccute f on some random members of its
domacwn.” Thus when AM applies this heuristic rule to fill in examples of Set-equality,
it« Domain facet is inspected, and AM notes that Set-equalily takes a pair of sels as its
arguments. Then AM accesses the Examples facet of the concept Set, where it finds a
larpe list of sets. The lhs is thus satisfied, so the rule is fired. Obeying the heuristic
rule, AM repeatedly picks a pair of the known sets at random, and sees if they satisty
Set-equality (by actually running the LISP function stored in the Algorithms facet of
Sel-equality). While this will typically return Faise, it will occasionally locate -- by
random chance -- a pair of equal sels.

Other heuristics, tacked onto other generalizations of Set-equality, provide additional
methods for executing the job “Fill in examples of Sel-equality.” A heurislic stored on
the concept Any-concep! says to symbolically instanhiate the definition. After spending
much time manipulating the recursive defirution of Sel-equality, a few trivial examples
(ke {}={]) are produced. Notice that (as expected) the more general the concept is,
the weaker (more time-consuming, less chance for success) its heuristics tend to be.
For this reason, AM consults each concept’s rules in order of increasing generalization.

3.5. Behavior of this Rule System

Ax the preceding four sections indicate, the dynamic behavior of AM was as follows: a
job s chosen from the agenda, potentially relevant rules are located by their position
in the Genl/Spec latlice, their lhs’s (left-hand sides) are evaluated to find those which
actually trigger, they are then executed (in order of decreasing specificity) unlil they
are ali executed (or untit some local, self-impozed limit on time or space is exceeded),
and the cycle repeats. AM has a modest facility that prints out a description of these
activities as they occur. Here is a tiny excerpt of this self-trace monologue.

*¢ Job 65: sx Fill in Examples of the concept "Divisors-of”.
3 Reasons: (1) No known examples of Divisors-of <o far.
(2) TIMES, which is related to Divisors-of, is now very interesting.

(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. e g., Divisors-of(6)={1 2 3 6).
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*71 Job 66: ss Consider numbers having smalt sets of Divisors-of.

2 Reasons: (1) Worthwhile 1o look for extreme cases.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with O divisors.
O examples found, in 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors.

Filinp 1n examples of numbers with | divisors.
I examples found, in 4.0 seconds. e.g., Divisors-of(l) = {1}.
Conjecture: 1 15 the only number with precisely 1 divisor.

Filling 1n examples of numbers with 2 divisors.
24 evamples found, in 4.0 secords. eg., Divisors-ot{13) = {1 13}.
MNo obvious conjeclure. May mernit more study.
Creating a new caoncept: "Numbers-with-2-divicors”.

Fithing »n examples of numbers with 3 dwisors.
1l examples found, in 40 <econds e g, Divicors-01(49) = {1 7 49},
All numbers with 3 divisors are also Squares. Definitely merits more study.
Creating a new concept: "Numbers-with-3-divisors™.

*+ Job 67: ¢+ Corsider the square-roots of Numbers-with-3-divisors.

2 Reasons: (1) Numbers-with-3-divicors are unexpectedly also Perfect Squares.
(2) Focus of allention: AM recently worked on Nos-with-3-divisors.

All square-rools of Humbers-with-3-divisors seem to be Numbers-with-2-dvisors.
e.g,, Divicors-of(Square-root(169)) = Divicors-of(13) = {1 13}.

Even the converse of this seems emprrically 1o be true, .
r.e.,, the square of each No-with-2-divisors seems to be a No-with-3-divisors,
The chance of coinc:dence 1< below acceptable limits. .

Boosting the interestingness rating o! each of the concepts involved.

v+ Job 68: s+ Consider the squares of Numbers-with-3-divisors.

3 Reasons: (1) Squares of Numbers-with-2-divisors were interesting.
(2) Square-roots of Numbers-with-3-divisors were interesting.
(3) Focus of attention: AM recently worked on Nos-with-3-divisors.

Now thal we've seen how AM works, and we've been exposed to a hit ol "local"
resulls, let's take a moment to discuss the totality of the mathematics which AM carried
oul. AM began its investigations with scanty knowledge of a hundred elementary
concepts of finite set theory. Most of the obvious sel-theoretic concepis and
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relationships were quickly found (eg., de Morgan's laws; singletons), but no
~ophicticated set theory was ever done (e.g., diagonalization). Rather, AM discovered
natural numbers and went off ewploring elemenlary numbher theory. Arithmetic
operations were s00n found (as analogs 1o sel-theorelic operations), and AM made
wurprising progress in divisibility theory. Prime pairs, Diophantine equations, the
umque factorization of numbers into primes, Goldbach's conjecture -- these were some
of the nice discoveries by AM. Many concepts which we know to be crucial were never
urcovered, however: remamderl. gcd, greater -than, infinity, proof, etc.

All the discoveries mentioned were made in a run lasting one cpu hour (Interlicp+ 100k,
SIMEX PDP-10 KI). Two hundred jobs in tolo were selected from the agenda and
evecuted. On the average, o job was granted 30 cpu ~econds, but actually used only
18 «econds. For a typical job, about 35 rules were located as potentially relevant, and
about a dozen actually fired. AM began with 115 concepts and ended up with three
tinme, that many. Of the synthesized concepls, half were technically termed “losers™
(both by the author and by AM), and half the remaining ones were of only marginal
ntorent.

Although AM fared well according to ceveral different measures of performance (see
Section 7.1 1in [13)), of greates! sigmificance are its lLimetations. This suksection will
merely report them, and the next section will analyze whether they were caused by
radical departures from the neo-classical production-system archileclure, or from
departing not far enough from that early design.

A« AM ran longer and longer, the concepts it defined were further and further from
the primitives 1t began with. Thus “prime-paire” were defined using “primes” and
“addition”, the former of which was defined from “divisors-of”, which in turn came from
"multiplication™, which arose from “addilion”, which was defined as a restriction of
“urmion”, which (finally!) was a primitive concept (with heuristics) that we had supplied
to AM imtially. When AM subsequently needed help with prime pairs, it was forced to
rely on rules of thumb supphied origmally about unconing. Although the heritability
property of heuristics did ensure that those rules were shil valid, the trouble was that
they were too general, too weak to deal effectively with the specialized nolions of
primes and arithmelic. For instance, one general rule indicated that AuB would be
intereting if it possessed properties absent both from A and from B. This translated
into the prime-pair case as "If p+q=r, and p,q.r are primes, Then r is interesting iof it
has properties not possessed by p or by q." The cearch for calegories of such
intcresting primes r was of course barren. It showed a fundamental lack of
understanding about numbers, addition, odd/even-ness, and primes.

A- the derived concepts moved further away from finite set theory, the efficacy of the
imhial heuristics decreased. AM began to “thrash®, appearing to lose most of its
heuristic guidance. It worked on concepts like “prime triples”, which is not a rational
thing to investigate. The key deficiency was the lack of adequate meta-rules[6]:
heuristics which cause the creation and modification of new heuristics.

Me concep!, and many of the other “omissions”, could have been discavered by the existing heuristic rules in
AM The paths which would have resulted in thew defiutron were simply never rated high enough fo enplore
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Acide from the preceding major !i~wtation, most of the other problems pertain to
missinp, knowledpe. Many concepls one might consider basic to discovery in math are
abzent from AM; analogies were under-utilized; physical intuition was absent; the
interface 10 the user was far from ideal; elc.

4. Reexamining the Design

I ot s now consider the major components of a RS’s decign and how AM treated them:
the DS, the rules, the distribution of knowledge between DS and rules, and the rule
interpretation policy. For each component, AM's architeclure failed to adhere strictly
to the pure RS gudelines. Were these departures worth the loss of simplicity? Were
the deviations due 1o the task doman (scientific discovery), to the task view
(heuristically guided growth of structured theories), or to other sources? These are
the kinds of questions we shail address in each of the following subsections.

4.1. Data Structures

We recopmize that a wngle uriform DS (e.g, an infimte STM [19]) 1s universal in the
Turing <ense of being formally adequate: One can encode any representation in a
hnear, homogeneous DS. The completenecs of such a DS design not withstanding, we
believe that encouraging several distinct, special-purpose DSs will enhance the
performance of a discovery system. That s, we are wiling o sacrifice aesthetic purity
of DS« for clarity, etficrency, and power. In this section we will explore this tradeoff.

The data structures used in AM are unlike the umform memories ~uggested by the first
drsign constrant (see Figure 1). One DS -- the agenda -- holds an ordered list of
plausible queshion for the system to concentrate on, a hst of jobs to work on.
Another DS 1s the graph of concepts AM knows aboutl. Each concepl itself consists in
much structured information (see Figure 2). The rcasons AM has for each job have
information associated with them. Shil other information is present as values of
certain funchions and global variables: the cpu clock, the total number of concepts, the
lact thing typed out to the user, the last few concepts worked on, elc. All these types
of information are accessed by the lhs's (left hand sides) of heuristic rules, and
“affected by rhs's (some “deliberately™ in the tex! of the rule, some “incidentally”
through a chain of f-added methods).

Why 1s there this multitude of diverse DSs? Each type of knowledge (iobs, math
knowledpe, syslem status) needs to be treated quite differently. Since the primitive
operations will vary with the type of information, so should the DS. For jobs, the
primitive kinds of accesses will be: picking the highest-rated job, deleting the lowest-
raled one, reordering some jobs, merging new ones. A natural choice o make these
operalions efficient is to keep the system’s goals in a queue ordered by their rating or
partially-ordered by those ratings that are commensurable. For resource information,
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the usual request 1s for some statistic of some class of primary data. To maintain a
table of such summary facts (like how much the CPU clock has run so far, or how many
concepts there are) is to introduce an unnecessary DS and incur exorbitant costs to
maintain many short-lived entries that will, most probably, never be used. |t is far
more reasonable to run a summarizing procedure to develop just that ephemeral, up-
to-date information that you need. For math concepts, we have a much less volatile
~ituation. We view them as an ever-growing body of highly-interrelated facts.
Knowledge in this form is stable and rarely deleted. When new knowledge is added, a
great many “routine” inferences must be drawn. In a uniform, linear memory, each
would have to be drawn explicilly; in a structured one (as the Genl/Spec graph
~tructure provides) they may be accomphshed through the tacit (analogical)
characteristics of the representation, simply by deciding where to place the
information.

Fach kind of knowledge dictates a set of appropriate kinds of primitive operations to
be performed on i, which in turn suggest natural data structures in which to realize it.
The generality of this perspective on rule-based systems is made more plausible by
cxamiming other RSs which deal with many types of knowledge (e.g., [5)). If this is so,
it the decign proceeds from “knowledge to be represented” to "a data structure to
hold 11", then fixing a priors the capabihties of the DS access primitives available to
rules 1s suspect,

Therefore, we advocate the opposite: the RS decigner 1« encouraged to name every
combhination of "machine™ operations that together comprice a single conceptual access
of data by rules. In AM, it 1= quite rea<onable to expect that a request like "find all
peneralizations of a given concep!”™ would be such a prinutive (1 ¢, could be referred to
by name). Even thouph 1t might cauce the “mactune” (in this case, LISP) to run around
the Genl/Spec graph, a single rule can treat this as merely an "acces” operation. The
use of complex tests and actions s not new; we «imply claim that it 15 always
preferable to package knowledge (for which a reasonably fast algorithm is available)
a~ a single action (though it may have side-effects in the space of concepls) or a
single test (so long as ite cole side-effect -- modulo caches -- is to «ignal). Primitive
te«t< and actions shouid be maximally algorithmic, not minimally compulational.

The neo-classical view of desigming a production rule system was thal of defining a
machine. Qur present view is that RSs do not compute s0 much as they guide attention.
In adopting this view (thereby separating the conlroller from the effector), we
recogrnize that we are giving up an attractive feature of pure rule systems: a
homogeneous basis for definition. For example, the rule system designer must now
<pell out in deltail the definitions of the DS accessing functions; butl the designer cf a
neoa-classical RS 1s simply able to take as givens the malching and inserling operations
(as specified in neo-classical principle #6, Figure 1), and he builds each more
complicated one out of these primitives®. In giving up the old view of the RS as an
ab-iract computing machine, the RS designer must use another homogeneous substrate

2 Lither by stringing out s sequence of primitives on one side of a ruls, or by bandcrafling 3 tightly coupled
bundle of rules (80 firing such 8 rule would simulate traversmg one hink of the kind thal sbound n AM's DSs)
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(.o, LISP) in terms of which to define s DSs and e<pecially the procedures that
process them. [n exchange, he obtains a clear distinction between two kinds of
knowledge contained in the neo-classical rule: plausible proposals for what to do next,
and how 10 accomplish what might be proposed.

We have seen that admilting complicated and varied DS« leads to slylized <ets of DS
arceasces. The DSs and their sets of read/wrile primitives must in turn be explicitly
defined (coded) by the decigner. This seems like a high price to pay. Is there any
bright side to this? Yes, one rather interesting poscibilily is opened up. Not only the
RS desipner, but the RS «uself may define DSs and DS access functions. In AM, this
micht take the form of dynamically defiring new kinds of facets (slots). Eg., after
“injective Function™ 1s defined, and after some properties of it have been discovered, it
would be appropriate to introduce a new facet called “inverse® for each (concept
reprecenting an) injective function  In AM, the actual detinitions of the facels of every
concept are complex enough (shared structure), inter-related enough (shared meaning),
and interesting enough (consistent heuristic worth) thal a special concept was included
for each one (e.g., a2 concept called “Examples™) which contained a definition,
deccription, .. of the facet. Thus the same techniques for manipulating and diccovering
math concepls may be applied 1o DS design concepts. Not only do math theories
emerge, 50 can new DS access functions (new slots; e g, “Small Boundary Examples”,
"t actorization”, or “Inverse”).

It <hould be noled that in opting for nun-uniform DSs, we have not in general
~acnificed efficiency. Orne has only to compare the time to access a node in a lree,
versus in a hinear hst, o appreciate that efficiency may, in fact, be increased by non-
umformity,

doet how tangled up a DS shoutd we tolerate? Should memory elements be permitted

to refer to to "know about”) each other? We helieve the answer to depend upon the

type of data structure involved. For the homogeneous NS called for in the neo-classical
tocann, much simplicity 15 preserved by forbidding this kind of interrelationship. But
con~ader a DS like AM's graph of concepts. It 15 growing, analogically interrelated, and
it contains descriptions of its elements. This richness (and sheer quantity) of
imformation can be coded only inefficiently in a uniform, non-self-referential manner.
for another example, consider AM's agenda of jobe. One reason for a job may simply
be the existence of some other job. In such a case, it seems natural for part of one
rnlry on the agenda (a reason part of one job) to point to another entry in the same
DS (point to another specific job ¢+ the apenda). Thus, inler-element pointers are
allownd, even though they blur a “pare” distinction between a DS and its entries.”
Inter-element references play a necessary role in organizing large bodies of highly
interrelated information into structured modules. -

There is yet another motivation for <pecial-purpose DSs when the task of the RS
includes sensing an external environment. Using a uniform memory, external stimuli
are dumped into the working memory and rub shoulders with all the other data. TJhey

»

3 In section 43 we witl mention work thal blure g distinction even furiher
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mu«t then be distingushed from the others. ("Mu«l” because to freely intermingle
what one sees or is told with what one thinks or remembers is to give way to endless
confusion.) How much cleaner, less distracting, and safer it is for stimuli to arive in
their own special place -- a place which might well be a special purpose store such as
an intensity array (not even a hst <tructure at all), or a low-level speech-sepment
quecite. A linear memory (eg., an infinite STM) 15 of course adequale; one could tag
rach incoming environmental stimulus with a spectal flag. But the design philosophy
we are proposing ts anted at mawimuzing clarity and efficiency, not uniformity or
umnversabity,

We know that this view of DSs means making a speciahized design effort for each class
of wnowledge incorporated into the PS. But that is desirable, as it buys us three
thinpe: () system performance 1s increased, (1) some forms of automalic .learning are
facilitated, (1ii) knowledge is easter 10 encode.

4.2. Rules

In the "pure” view of RSs, the rule <tore is not a full-fledged DS of the RS. For
example, in Waterman's [24] poker player, rules may not be deleted. Rychener (22]
~lates that the only way his RS may inspect rules 1s by examining the effect of those
rulee. which have recently fired. Although AM had ro evphcil taboo against inspecting
rulen, auch analyses were in practice never posable. since the rulee were ad hoc
hlocks of LISP code. This eventually turned out to be the main imitation of the design
of AM. The ultimate impediment to further discovery wae the lack of rules which could
reacon about, modify, delete, and synthesize other rules. AM direly needed to
< snthesize specialized forms of the given general heuristic rules (as new concepls
aroee; see the end of 35.)

We want our heuristic rules to be added, kept track of, reasoned aboul, modified,
deleted, generalized, speciahized, .. whenever there 1o a pood reason to do «o. Note
that those situations may be very different from the ones in which cuch a rule might
firc. E.g., upon discovering a new, interesting concept, AM should try to create some
«pocially-tailored heuristic rules for it. They wouldnt actually fire until much later,
when their ths's were triggered. After having consiructed such rules, AM might
<ubject them o criticism and improvement as it explores the new concepl.

In sum, we have found that the dizcovery of heuristic rules for using new math
concepls is a necessary part of the growth of math knowledge. Hence, following the
arpument in 4.1, the rules themselves should be DSs, and each rule might be described
by a concept with effeclive (executable) and non-effective (purely de~criptive) facets.
Thic lescon was made all the more painful because it was not new [S] Apparently the
need for reasoning about rules is common to many tacke.

The current re-coding of AM does in fact have each rule repre<ented as a concept.
Whal kinds of non-effective "facels” do they have? Recall that one of the features of
the original AM (as described in Section 3.3) was that with each rule were associated
some symbolic reasons which it could provide whenever it proposed a new job for the

e
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agenda. So one kind of facet which every rule can poecras is "Reasons”. What others
are there? Some of them describe the rule (e.g., its averape cost); some facets provide
a road map to the space of rules (e.g., which rule schemata are mere specializations of
the given one);, some facets record its derivalion (e.g., the rule was proposed as an
analog to rule X because _.), its redundancy (some other rules need not be tried if this
one 1s), etc.

There are some far-reaching consequences of the nerd to reacon about rules just as if
they were any other concepts known to AM. When one piece of knowledge relates to
ceveral rules, then one zeneral concept, a rule schema, <hould evist to hold that
common knowledge. Since each rule iz a concept, there will be a natural urge to
cxploit the same Genl/Spec organization that proved <o useful before. Heritability still
holds; e.g., any reason which explains rule R is also ~omchow a partial explanation of
each specialization of R.

Rule schemata have cause to evist simply becau<e they peneralize -- and hold much
information which would otherwise have 1o be duplcated in -- ceveral specific rules.
They may tend to be “bin” and less direclly prodicts -0 when everuted, yel they are of
value 1in capluring the essence of the discovery tochmqunc.a We put "big” in quotes
because sheer length (fotal number of lhs tests allowed, total number of rha actions) ic
not directly what we're talking about here. A generat rule schema will capture many
repularities, will exprese an idea common {0 several more specific rules. It will contain
dual forms of the same rule, sophisticated types of variable-binding (for the duration
of the rule application), and searching may even be renuired to find the actions of such
a general rule. We may even wish to concider every rule in the RS ac a rule schema of
~ome level of generality, and much processing may po on to find the parlicular
in~tancn(s) of it which should he applied in any particular <ituation.

Let us consider a rule schema called the “rule of enthusiasm™ | subsumes several
rules in the original AM system (pp. 247-8 of [13]), eg., those that sad:

If concept G ts now wvery tnteresting, and G was created as a gencralization
of some earlier concept C.

Give ertra consideration to generalizing G, and tc generalizing C in other
ways.

and:

If concept S proved to be a dead-end, and S was created as a specialization
of some earlier concept C,

Give less consideration to specialiring S, and to specializing C in other ways
in the future.

4 In AM, aven the specific rules may be “bg” in the sense that thew very precise knowledge nv involve much
testing to trgger and, once lriggered, may conclude some elsborale resuils
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The proposed rule schema is:

If concept X has very high/low interest and X can be derwved from some
concept C by means m,

Cive more /less consideration to finding (and elaborating) concepts derived
Jrom C, X (and thewr “neighbors™) by means analogous to m.

There are four variables to be matched and coordinated in the ths of this rule: a
concept X, the direction (high or low) of its extreme interest rating, a derivation
procedure m and an associated source concept C. The action itself is to search for
job« of a certain type and give them a corresponding (high or low) rating change.
Three types of matching are present: 1) ranging over a sct of allernatives which are
known at the time the rule i1s written (e.g, the "high/low" alternative); (is) ranging over
a ~ct of allernatives which can be accessad eacily at any moment the rule is run, like
the <ot of concepts and connections between them now in existence (e.g., the variable<
X and C range over this kind of sel), () ranging over a set of alternatives which must
be heuristically searched for as part of the rule execution (e.g., “analogous” and
"neighbors™ only make sense after a2 nontnvial amount of searching has heen
performed).

Since the “rule of enthusiasm™ 1s very general, it will only be tried if no more specific
rules (such as the two which were hsted just above it) are relevant at the time.
Ideally, the search to specify the action should create a new, specialized form of the
rule of enthusiasm 1o catch this situation and handle & quickly, should it arise again.
Note that versions of this schema that mention generalization or specialization are also
~chemata (without any specification search);, they are simply less general schemata
than the rule of enthusiasm itself. Whenever a new subject for discovery gets defined,
the abstracl, hard-to-evecute rule schemata can be specialized (compiled, refined ,
etc.) into efficient heuristics for that subject.

Another uce of a rule schema might be 10 name a collection of neo-classical rules that
are coupled by together fulfilling a single function. Consider a collection of rules
which 15 tightly coupled, say to perform an iteration. Much knowledge aboutl the
iteration loop as a whole may exist. Where is such descriptive information to be stored
and sought? Either it must be duplated for each of the coupled rules, or there must
be a rule-like concept which “knows about”™ the iteration as one coherent unit. We
conclude that even if some intertwined rules are kept separate, an exira rule (a
schema) should exist which (at least implcitly) has a rhs which combines them (by
containing knowledge common to all of them). Thus rule schemata do more than just
unify general properties of rules: there must also be schemata of the kind that relate
function to mechanism.

Another problem crops up if we consider what happens if one of the coupled rules is
modificd. Often, some corresponding change should be made in all its companions. For
example, if a term is generalized (replacement of “prime” by "number” everywhere)
then the same substitution had probably better be done in each rule with which this
one is supposed to couple. What we are saying is that, for RSs which modify their
own rules, it can be dangerous to split up a single conceplual process into a bunch of
rules which interact in more or less fixed ways when run, without continuing to reason
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about them as an integrily, ltke any other algorithm composed of parts. Here agan,
we find pressure to treal RSs as algorithms, not vice-versa.

Finally, let us make a few irresistable observations. The whole notion of coupling via
meaningless tokens 1s aesthelically repugnant and quite contrary to "pure” production
system spirit. By "meaningless” we mean entries in DS that provide a narrow hand-
crafted channel of communication between two spectfic rules that therefore "know
about each other".5 At the least, when a coupled rule deposits some “intermediate-
~tate” message in a DS, one would ke that message to be meaningful to many rules in
the system, to have some significance itself. We can see that entries in a DS have an
expected meaning to the read access functions that examine the OS.6 If this purnity 1s
maintained, then any apparent "coupling™ would be merely superficial: each rule could
«tand alone as a whole domain-dependent heuristic. Thus no harm should come from
changing a single rule, and more rules cculd be added that act on the “intermediate
measage” of the coupling. Such meaningful, dynamic couplings should be encouraged.
Only the meaningless, hight couplings are being criticized here.

4.3. Distribution of Knowledge Between Rules and DS

A common "pure” idea 1s that all knowledge of substance ought to be represented as
rules. Independent of such rules, the DS forms no meaningful whole initially, nor has it
any final interpretation. The “answer™ which the RS computes is not stored in the DS;
rather, the answer consists in the process of rule firmgs.7 The DS is "just” an
intermediate vehicle of conirol information,

Conlrary to this, we say that rules ought to have a symbiotic relationship to DSs. The
DSs hold meaningful domain-dependent information, and rules process knowledge
represented in them, For RSs designed to perform scientific research, the DSs contain
the theory, and the rules contain methods of theory formation.

But much domain-dependent knowledge is conditional. E.g., "If n and m are relatively
prime and divide x, then so must nm". Shouldn't such If/Then information be encoded
a« rules? We answer an emphatic No. Just as there is a distribution of “all knowledge
of substance” between rules and DSs, so too must the condifional information be
partitioned between them. We shall illustrate two particular issues: (i) Much
information can be stored implicitly in OSs; (ii) Some conditional knowledge is
nappropriate to store as rules.

SBy contrast, » “meaningful” DS entry will embody » prece of infarmation which is specific lo the RS's task, not
to the actual rules themseives

6 Perhaps this "meaning” could even be expressed formally as an inveriant which the write access functions for
the DS must never violete

7 The sequence of actions in time In addition, perhaps, the “snswer” may involve a few of their sde-effects
€g. (Respond 'VES')

s e T » ——— - -
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When designing 3 DS, 1t 15 po<sible to provide mechanisms for holding a vast amount of
iformation tmplicitly. In AM, eg., the organization of concepts into a Genl/Spec
hierarchy (plus the assumed beritability properties; see 3.4) permits a rule to ask for
"all concepls more general than Primes™ as f that were a piece of data explicitly
~tored n a DS. In fact, only direct generahzations are slored ("The immediate
r.enerahization of Primes 1s Numbers®), and a “ripphng” mechanism automatically runs up
the Genl links to assemble a complete answer. Thus the number of specific answers the
35S can provide is far greater than the number of individual items in the DS. True,
these DS mechanisms will use up extra time in procescing to obtain the answer; this is
rfficient since any particudar request 1s very unlirely to be made. Just as each rule
knows about a general situation, of which it will only see a few instances, that same
quatity (of wide potential apphcabihly) 15 just as valuable for knowledge in DSs. These
are situations where, ike Dijkstra’s multiplier (8], the mechamism must provide any of
the consequences of its knowledge quickly on demand, but in its hfetime will only be
a~ked a few of them.

flow that we have seen how tacit information can be encaded into DSs, let us see some
cacee where & should be -- 1o, where 1t 1 not agpropriate {0 encode 1t as rules of
the wvetem. Many things pet called smphcation, and only some of them cdrrespond to
rule application. For inctance, there 1= logical entadment (e.g., 1t AAB then A), physical
c ausation (e.g., 1 1t rains, then the ground wilt get wet), probable associations (e.g., if o
1. wet underfool, then it has probably been raning.) These all describe the way the
world s, not the way lhe percever of the world behaves., Conlrast them with
rnowledge of the form “If 1t 1s rairng, then open the umbrella®™ We claim that this last
kind of situation-action relationstwp <hould be encoded as rules for the RS, but that the
other typer of implication should he stored declaralively within the DS. Let’s try to
tuntify this distinction

The situation-action rules indicate imperatively how to hehave in the world; the other
types of implication merely indicate expected relationships and tendencies within the
worild. The rules of 2 RS are meant to indicate poltenhial procedural actions which are
obeyed by the system, while the DSs indicate the way the world (the RSs environment)
hehaves in terms of some model of it. The esscntial thing to conarder 1s what relations
are 10 be caused in time; these are the things we should cast as rules. The lhs of a
rule measures some aspect of knowledge presently 1n DSs, while the rhs of the rule
defines the attention of the system (regarded as a processor feeding off of the DS) in
the immediate future.

This 15 the heart of why rule-sets are algorithms. They are algorithms for guiding the
apphcation of other (DS processing) algorithms. It also explains why other kinds of
implications are unsuitable to be rules. Consider causal implication ("Raining --> Wet").
While the lhs could be a rule’s lhs (it measures an aspect of any situation), the rhs
~hould not be a rule’s rhs (it does not indicate an appropriate aclion for the system to
tate).

81n a RS that sspires {0 any generably at sll, an snfecedeni theorem of the form “if [you know that] it is rainm=,
thon [sssert that] it is wet™ is nol the appropriate form to sicre this knowledge. 1t is 1oo compied » 'ofm.

g i 5 7
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Most purist produchon systems have (often implicitly!) a rule of the form “If the left
«ide of an implication 15 true in the databace, Then assert the right zide®. This is only
one kind of rule, of course, capable of dealing with implications. For example, MYCIN
and LT [17] (imphcitly) follow a very different rule: "If the rhs of an implication will
satisty my goal, Then the Ihs of the implication 15 now the new goal”, Other rules are
possible; many rules for reazoning may feed off the same “table” of world knowledge.
The point is that the implications themcelves are declarative knowledge, not rules. In
summary, then, it may be very important to distinguish rules (attention guides) from
mere implicalions (access guides), and o store the latter within the DSs. This policy
was not motivated by the scienlific inference task for our RS. We believe it to be a
worthwhile guideline in the design of sny RS,

4

4.4. Interpreter

After a rule fires, the neo-classicat interpretation policy (89 in Figure 1) demands that
any rule in the csyctem can potenhially he the nex! one selected to fire. This is true
regardless of the <speed-up techmques used in any parficular implementation (say, by
preprocessing the ths’s into a discrimination net {22]). But conaider RSs for scientific
dincovery tasks. Their task -- both at the top level and frequently at lower levels -- is
quite open-ended. If twenty rules trigpger a« relevant o such an open-ended actlivily
(c p.. pathering empirical data, inducing conjeclures, ete.) then there is much motivation
for continuing to execute just these twenty rules for a while. They form an ad hoc
plausible search algorithm for the agenda item <elected

A RS for discovery might rcasonably be given a complex interpreter (rule-firing
policy). AM, for example, experimented with a tlwo-pass interpreter: first, a best-first,
agenda-driven resource allocator and altention focusser selects the job it finds most
interesting; second, it locates the set of relevant rules (lypically about 30 to 40 rules)
tfor the job, and begins evecuting them one after another (in best-first order of
~peciticity) until the resources allocated in the tirst step run out (20] The overall
rating of the job which these rules are to salisfy determines the amount of cpu time
and list cells that may be used up before the rules are interrupled and job is
abandoned.

For example, say the job were “Find examples of Primes™. It°s allotted 35 cpu seconds
and 300 list cells, due to its overall priority rating jus! before it was plucked from the
apenda. Say, 24 rules are relevant. The first one quickly finds that “2° and "3" are
primes. Should the job halt right then? No, not if the real reason for this job is to
gather as much data as possible, data from which conjectures will be suggested and
tested. In that case, many of the other 23 rules should be fired as well. They will
produce not only additeonal examples, but perhaps other types of examples.

standing alone If “lold” (or grven) o rule hhe fivs, 8 learmng sysiem should “parse” 1t as a fomikar kind of
deduction, fde the residue of new informetion away a8 » conjpeclured tendency of wetness to follow rain, and
sinrt choching for enceplions A sophisticaled (snd luchy) discovery RS might thereby develop the concept of
“aholter”
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The jobs on AM's agenda are really just mint-re<carch questions which are plausible to
~pend hme investigating. Although phrased as <pecific requeste, each one is really a
ronecarch proposal, a topic to concentrate upon. We found it necessary to deviate from
the «implest uniform interpreter for clarity (e.g., a human can follow the first-pass (job
~rlection) taken alone and can follow the second-pa<« (job execution) by ilself), for
efficiency (knowing that all 24 rules are relevant, there 15 no need to find them 35
time<), and for power (applying quahtatively different kunds of rules yields various
type. of examples). We claim this gquality of open-endedness will recur in any RS
whose task 15 free concept exploration. Thic includes all scientific discovery but not all
ccientific inference.

5. Speculations for a New Discovery System

The «<pirit of this paper has bteen !¢ give up slraphtforward simplicity in RSs for
clarity, efliciency, and power. Several examples have been cited, but we speculate that
there are further tradeoffs of this kind which are applicable to RSs whose purpose is
tn make new discover:es.

Often, there are several possible ways the designer may view the task of (and
~~ubtasks of) the intended RS. We wish to add the notion of “proof” to AM, say. Should
we represent proof ac a resolution ~carch, as a process of crihcism and improvement
[11] spiralling toward a <olution, as a natural deduction cascade, .2 Although any one
0f these task-views might perform respectably, we ad-ocate the incorporation of all of
them, deespite the concommitant coste of added proce--ing time, space, and interfacing.
In fact, we wich never to erclude the pocsibility of the «ystem acquiring another task-
vIiew,

We look for the development of further discovery tools in the form of domain-
imdependent meta-heuristics that synthesize heuristic rules, and in the form of abstract
hruristic schemata that specialize into efticient rules for each newly-discovered
domain. These discovery tools are all part of “getling familiar™ with shallowly
understood concepts, such as synthecized ones tend to be imhally. It may even be
that «ymbolic analogy techniques exist, cutling across the traditional boundaries of
knowledge domains.

We contemplate a system thal keeps lrack of (and has methods with which it attempts
1o improve) the design of its own DSs, its own control structure, and perhaps even its
own design constraints. Although working in (a collection of) specific domains, this
would be a general symbol system discoverer, capable of picking up and exploring
formulations, testing them and improving them.

5.1. A New Set of Design Constraints

Below are 13 principles for designing a RS whose task is thal of scientific theory
formation. They are the result of reconsidering the original principles (Figure 1) in the
light shed by work on AM. Most of the "pure” principles we mentioned in Figure | are
-hanged, and a few new ones have emerged.
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FIGURE 3: Scientitic Discovery RS Architecture

Principle of Several Appropriate Memories. For each type of knowledge
which must be dealt with in s own way, a separate DS should be
maintained. The precise nature of each DS should be chosen so as to
facilitate the access (read Zwrite} operations which will be most commonly
requested of «t. ’

Frenciple of Marimal DS Accesses. The set of primitiwve DS access operations
te., the read tests which a rule's lhs may perform, and the write actions
which a rhs may call for) are chosen to incluude the largest packages (clusters,
chunks,..) of activity which are commonly needed and which can be
performed efficiently on the DS.

Frinciple of Facetted DS Flements. For ever-growing data structures, there is
much to be yained and little lost by permitting parts of one DS item to point
to other DS iwtems. In particular, schematic techniques of representing content
by structure are now possible.

Principle of Rules as Dara. The view which the RS designer takes of the
system’'s task may require that some rules be capable of reasoning about the
rules en the RS (adding new ones, deleting old ones, keeping track of rules’
performance, modifying existing rules,...). Some of the methods the RS uses to
deal with scientific knowledge may be applicable to dealing with rules as
well In such cases, the system’s rules may thus be naturally represented as
new entries in the existing DS which holds the scientific theory.

Frinceple of Regularities Among Rules. Each rule s actually a rule schema.
Sophisticated processing may be needed both to determine which instance(s)
are relevant and to find the precise sequence of actions to be executed. Such
schemata are often quite elaborate.

Frinciple of Avoiding Meaninglessly-Coupled Rules. Passing special-purpose
loop control notes back and forth is contrary to both the spirit of pure RSs
and to efficitency. If rules are to behave as coupled, the least we demand is
that the notes they wrue and read for each other be meaningful entries in DS
fany other rule may cnterpret the same note, and other rules might have
written one itdentical to ).

Frinciple of Controlled Environment. For many tasks, it is detrimental to
permit external stimuli (from an environment) to enter any DS at random.
At the least, the RS should be able to distinguish these alien tnputs from
internally-generated DS entries.

Principie of Tacit Knowledge. In designing the DS, much knowledge may be
stored tmplicitly; e.g., by where facts are placed in a hicrarchical network.
The DS should be designed so as to maximize this kind of concentrated,
analogical information storage. Hence, hard-working access functions are
needed to encode and decode the full meaning of DSs.

i Ak
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9. Frinewple of Named Algorithms. When basic, "how to" knowledge ts avatlable,
tt should be packaged as an opcration and used as a part of the lhs or rhs of
various rules. Embodying this chunk of knowledge as several coupled rules is
not recommended, for we uill want to manipulate and utilize this knowledge
as a whole.

10. Principle of Rules as Attention Guides. Knowledge should be encoded as rules
when «t 1s intended to serve as a gurde of the system's attention; to durect its
behavior. Other kinds of information, even f stated ¢n conditional form,
should be relegated to DSs icither erplicitly as entries, or implicitly as special
access functions).

11. Principle of Inertial Interpreter. In tasks lLike scientific research, where
relevant rules will be performung inherently open-ended activities (e.g., data-
gathering), such rules should be allowed to continue for a while even after
thcy have nomuinally carried out the actwity f(c.g.. gathered one piece of
data). In such cases, the occasional wasted time and space is more than
compensated for by the frequent acquusition of valuable knowledge that was
concentrated in the later rules. For scientific discovery, no single rule
(however “appropriate”™} should be taken as suffictent: a single rule must
necessaridly view the task in just one particular way. All views of the task
have somcthing to contribute; hence variety depends on a policy of always
applying several rules,

12. Principle of Orenness. A discovery rule system can be enriched by
tncorporating tnto its design reveral independent vierss of the knowledge «t
handles. Never assume everything s knouwn about a class of knowledge. All
appropriate formulations of a knowledge class have something to contribute;
hence variety depends on openness to new formulations.

13. Frinciple of Support of Discovery by Design. By reprecenting its own design
erplicitly 7say, as concents®. the RS could study and (mprove those ooncepts,
thereby «mproving tself. This includes the DS denpnq. the access function
algorithms, how to couple them, the function of varwous rules, the
tnterpretation policy of the RS, etc. Thus suggests that the study of designs
of computational mechanisms may be a worthy area for a discovery system
to pursue, whether «ts own design is avatlable to it or not.

Rule systems whose designs adhere to these guidelines will be large, elaborale, and
non-classical. We have mentioned throughout the paper several new complications
which the principles introduce. Trying to produce such a RS for a task for which a

9 e g, the facel specifications If the mputfoutpul requwements change with time, so should the rule system’s
data structures
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pure, neo-classical production rule system was appropriate will probably result in
dica<ter. Nevertheless, empirical evidence suggests that RSs having this architecture
e aquite natural -- and relatively traclable 1o construcl -- for apen-ended lasks like
scientific discovery.
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